Elevated White Cell Count and Risk of Thrombotic Events in Polycythemia Vera

SUMMARY: Polycythemia Vera (P. Vera) is a clonal myeloproliferative neoplasm characterized by isolated erythrocytosis in a majority of the patients, with the remaining demonstrating leukocytosis and/or thrombocytosis along with erythrocytosis. Patients usually present with this disorder in their sixth decade and are often asymptomatic, with the diagnosis made incidentally on routine laboratory evaluation. About 30% of the patients however, may initially present with a thrombotic episode, whereas a small percentage of patients may present with disease related symptoms such as pruritus and fatigue. The conventional risk factors for thrombotic events in MyeloProliferative Neoplasms (MPN) are age more than 60 years and prior thrombosis, and the presence of both these risk factors is associated with a 7-fold increased risk of thrombosis.

Overactivation of the JAK-STAT signal transduction pathway caused by V617F mutation has been implicated in majority of the patients with P. Vera. This pathway normally is responsible for passing information from outside the cell through the cell membrane to the DNA in the nucleus for gene transcription. Janus Kinase (JAK) family of tyrosine kinases are cytoplasmic proteins and include JAK1, JAK2, JAK3 and TYK2. JAK1 helps propagate the signaling of inflammatory cytokines whereas JAK2 is essential for growth and differentiation of hematopoietic stem cells. These tyrosine kinases mediate cell signaling by recruiting STATs (Signal Transducer and Activator of Transcription), with resulting modulation of gene expression. In patients with P. Vera, the aberrant myeloproliferation is the result of dysregulated JAK2-STAT signaling as well as excess production of inflammatory cytokines, associated with this abnormal signaling. JAK2 mutations such as JAK2 V617F are seen in approximately 95% of patients with P. Vera.Molecular-Mechanisms-of-MPNs

Studies have shown that JAK2 mutations that result in the overproduction of erythrocytes, leukocytes, and platelets in P. Vera also promote direct activation of leukocytes and platelets. Activated platelets and leukocytes bind to each other and activate endothelial cells, which may in turn contribute to the prothrombotic state. The prospective CYTO-PV trial published in 2011, established that maintaining hematocrit less than 45% through phlebotomies and/or cytoreductive drugs significantly decreased the risk of thrombotic events in P. Vera patients. Even though several retrospective analyses strongly suggest an association between leukocytosis and thrombosis and leukocytosis particularly at the time of the thrombotic event in P. Vera patients, no prospective trial has been conducted to assess the impact of WBC counts on thrombotic risk in P. Vera.

The REVEAL study is a large, real-world, multicenter, prospective, noninterventional, observational study, in which patients with P. Vera from US community practice and academic centers were enrolled, to evaluate the association between elevated blood counts and occurrence of thrombotic events in patients with P. Vera, using data from the REVEAL study.

This study analyzed the data of 2271 eligible patients for this analysis (78% high risk and 22% low risk). The median patient age was 66 years and 54% were male. The median disease duration was 4.1 years, 20% had a history of thrombotic events and majority of patients (53%) were receiving Hydroxyurea. Patient data was collected at diagnosis, at a 6-month period, and during follow up, 3 years from last patient enrollment, between July 2014 and August 2019 and the researchers analyzed the association between blood counts and thrombotic events. Out of 106 patients who had thrombotic events, 30 had arterial thrombotic events, most commonly, Transient Ischemic Attack and 76 had venous thrombotic events, most commonly, Deep Vein Thrombosis.

It was noted that hematocrit greater than 45% versus 45% or less (P=0.0028), WBC more than 11×109/L versus 11×109/L or less (P<0.0001), and Platelet counts more than 400×109/L versus 400×109/L or less (P=0.0170) were each associated with increased risk of thrombotic events. A WBC count of 11×109/L or more was associated with the highest thrombotic event risk compared with WBC count less than 7×109/L (P<0.0001).  When the HCT was controlled at 45% or less, an elevated WBC count (more than 12 × 109/L) was significantly associated with increased risk of thromboembolism (HR=1.95; P=0.03). In all models analyzed, advanced age and history of thrombotic events, were associated with increased thrombotic event risk.

The authors concluded that in this analysis of the largest real-world cohort of P. Vera patients to date, hematocrit more than 45%, as well as WBC more than 11×109/L and Platelet counts more than 400×109/L, were each associated with increased risk of thrombotic events. WBC more than 12×109/L was significantly associated with increased thrombotic risk, even when the HCT was controlled, suggesting that thrombotic risk may be reduced by controlling both the WBC count and HCT level. The authors added that these data support the incorporation of blood count values into risk stratification and treatment strategies for patients with P. Vera in clinical practice, and to move beyond the conventional risk model.

A Real-World Evaluation of the Association between Elevated Blood Counts and Thrombotic Events in Polycythemia Vera: An Analysis of Data from the REVEAL Study). Gerds AT, Mesa RA, Burke JM, et al. Presented at: 2022 European Hematology Association Congress; June 10, 2022; Vienna, AT. Poster # P1062.